On Combining Multi-robot Coverage and Reciprocal Collision Avoidance

نویسندگان

  • Andreas Breitenmoser
  • Alcherio Martinoli
چکیده

Although robotic coverage and collision avoidance are active areas of robotics research, the avoidance of collision situations between robots has often been neglected in the context of multi-robot coverage tasks. In fact, for robots of physical size, collisions are likely to happen during deployment and coverage in densely packed multi-robot configurations. For this reason, we aim to motivate by this paper the combined use of multi-robot coverage and reciprocal collision avoidance. We present a taxonomy of collision scenarios in multi-robot coverage problems. In particular, coverage tasks with built-in heterogeneity such as multiple antagonistic objectives or robot constraints are shown to benefit from the combination. Based on our taxonomy, we evaluate four representative robotic use cases in simulation by combining the specific methods of Voronoi coverage and reciprocal velocity obstacles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Strategy of the Reciprocal Collision Avoidance of Collaborative Robots

This paper, presents a formal approach that addresses the reciprocal robots collision avoidance, where collaborative robots need to avoid collisions one with each other while moving in a common workspace. Based on our formulation, each physical robot acts fully independently, communicating with corresponding virtual prototype and imitating her behavior. Each physical robot reproduces the pathwa...

متن کامل

Optimal Reciprocal Collision Avoidance for Multi-Agent Navigation

In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace. In our formulation, each robot acts fully independently, and does not communicate with other robots. Based on the definition of velocity obstacles [5], we derive sufficient conditions for collision-free mo...

متن کامل

Multi-robot collision avoidance with localization uncertainty

This paper describes a multi-robot collision avoidance system based on the velocity obstacle paradigm. In contrast to previous approaches, we alleviate the strong requirement for perfect sensing (i.e. global positioning) using Adaptive Monte-Carlo Localization on a per-agent level. While such methods as Optimal Reciprocal Collision Avoidance guarantee local collision-free motion for a large num...

متن کامل

Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots

In this paper an optimal method for distributed collision avoidance among multiple non-holonomic robots is presented in theory and experiments. Non-holonomic optimal reciprocal collision avoidance (NH-ORCA) builds on the concepts introduced in [2], but further guarantees smooth and collision-free motions under non-holonomic constraints. Optimal control inputs and constraints in velocity space a...

متن کامل

Reciprocal Collision Avoidance for Quadrotor Helicopters Using LQR-Obstacles

In this paper we present a formal approach to reciprocal collision avoidance for multiple mobile robots sharing a common 2-D or 3-D workspace whose dynamics are subject to linear differential constraints. Our approach defines a protocol for robots to select their control input independently (i.e. without coordination with other robots) while guaranteeing collision-free motion for all robots, as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014